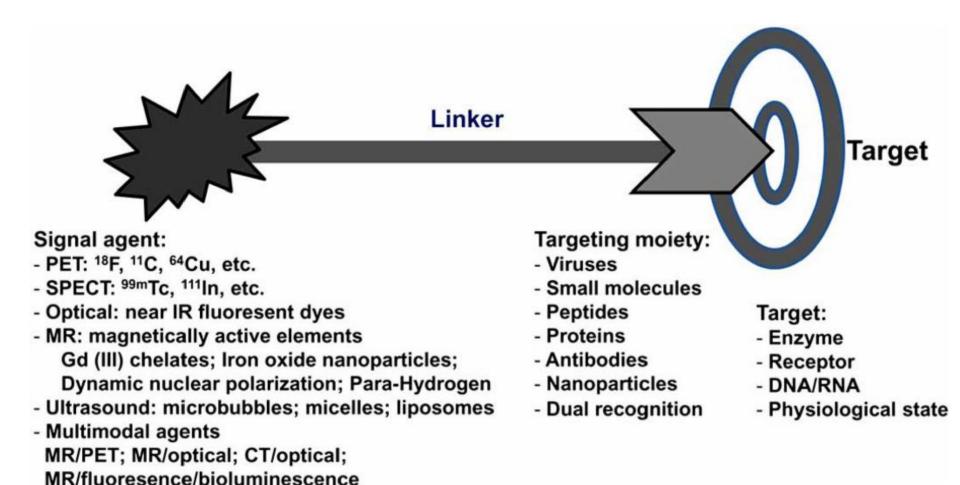
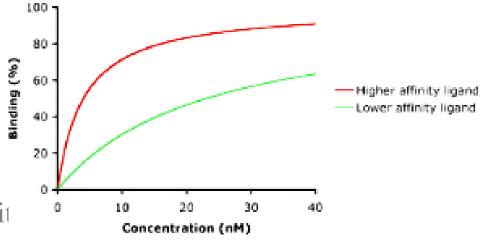


基礎放射化學:以 C-11與F-18為例

放射核種物理與化學性質、 放射藥物分離純化技術

臺北榮民總醫院 核子醫學部 張文議




Fig. (1). Schematic representation of molecular imaging probe.

- 1. High binding affinity to target
- 2. High specificity to target
- 3. High sensitivity
- 4. High contrast ratio
- 5. High stability in vivo
- 6. Low immunogenicity and toxicity
- 7. Production and economical feasibility

• 1. High binding affinity to target

Molecular imaging generally favors the acquisition of the images at early time after administration of a molecular probe. To obtain high uptake of the imaging probe to the target within limited circulation time frame requires that the imaging probe has binding property of fast on-rate (K_{on}) and slow off-rate (K_{off}).

- 2. High specificity to target.
- 3. High sensitivity.
- 4. High contrast ratio.
- 5. High stability in vivo.
- 6. Low immunogenicity and toxicit
- 7. Production and economical feasibility.

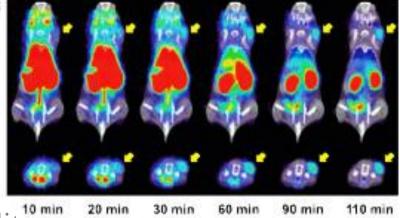
- 1. High binding affinity to target
- 2. High specificity to target

In contrast, target-specific molecular imaging probes can interact with particular biomarkers, such as enzyme, receptor, and transporters, which are involved in various biological processes associated with particular cell populations and subcellular compartments.

Nonspecific probes

- 3. High sensitivity
- 4. High contrast ratio
- 5. High stability in vivo
- 6. Low immunogenicity and toxicity
- 7. Production and economical feasibility

- 1. High binding affinity to target
- 2. High specificity to target
- 3. High sensitivity


To detect the biochemical process of the disease, especially at an early stage, frequently requires spying on the aberrant of a very small amount of targets.

- 4. High contrast ratio
- 5. High stability in vivo
- 6. Low immunogenicity and toxicity
- 7. Production and economical feasibility

- 1. High binding affinity to target
- 2. High specificity to target
- 3. High sensitivity
- 4. High contrast ratio.

High contrast images with high target-to-background or signal-to-noise ratio ensure appropriate interpretation of physiological and pathological conditions of the diseases.

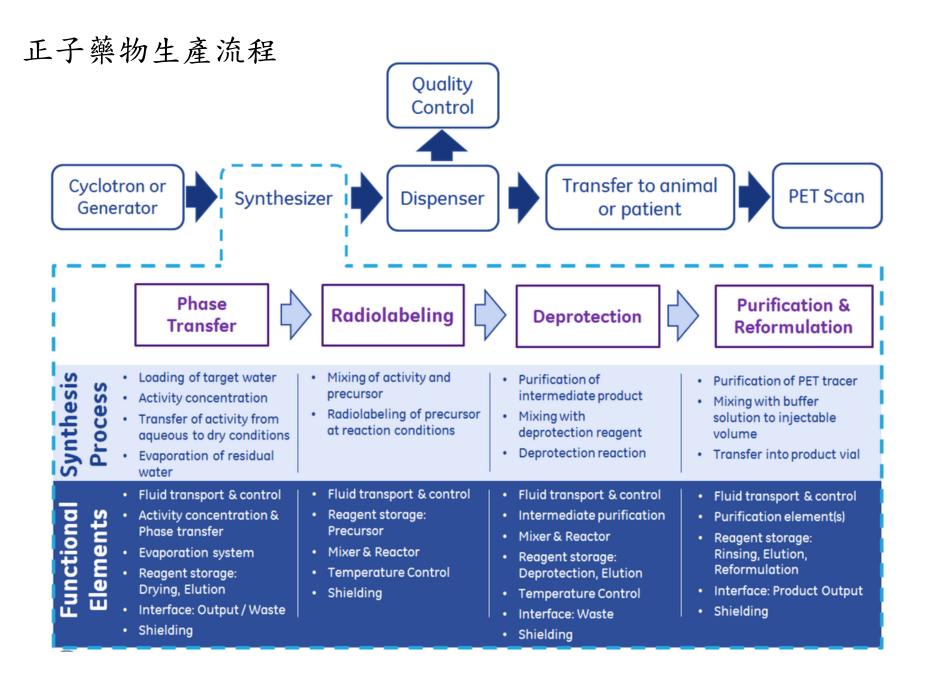
- 5. High stability in vivo
- 6. Low immunogenicity and toxicity
- 7. Production and economical feasibility

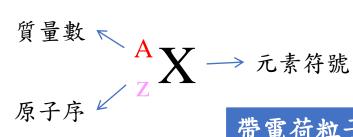
- 1. High binding affinity to target
- 2. High specificity to target
- 3. High sensitivity
- 4. High contrast ratio
- 5. High stability in vivo

Although only trace amount of imaging probe is normally given to the living subjects, maintenance of the intact structure of an imaging probe is a big challenge because numerous enzymes or proteases present in serum or targeted tissue may degrade the imaging probe. The image information given from the metabolites of the imaging probe undoubtedly complexifies the imaging readout and usually makes the understanding of disease highly vague.

- 6. Low immunogenicity and toxicity
- 7. Production and economical feasibility

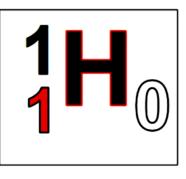
- 1. High binding affinity to target
- 2. High specificity to target
- 3. High sensitivity
- 4. High contrast ratio
- 5. High stability in vivo
- 6. Low immunogenicity and toxicity

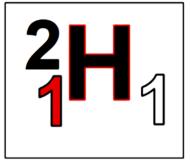

A molecular imaging probe should have minimal or acceptable level of immunogenicity and toxicity before it can be safely employed in human.


• 7. Production and economical feasibility

The low cost and excellent availability of molecular imaging probes are advantageous for their wide distribution and clinical routine use.

正子藥物生產流程




帶電荷粒子	英文	表示方式	
質子	Proton	p	¹ ₁ p
中子	Neutron	n	¹ ₀ n
阿法粒子	α 或 Helium	α	${}^{4}_{2}\alpha$ ${}^{4}_{2}\text{He}$
電子	Electron	e	⁰ _1e
氘核子	Deuterium	d	$^{2}{}_{1}d$
氫元子	Hydrogen	Н	${}^{1}_{1}H$

The main isotopes of hydrogen and their natural abundance:

HYDROGEN 99.9885%

DEUTERIUM 0.0115%

TRITIUM 10⁻¹⁵%

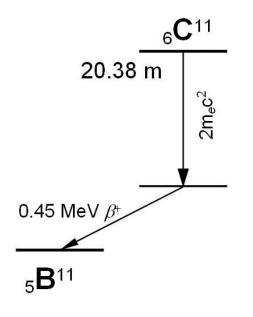
元素週期表際 Periodic Table of the Elements																	
鹼金屬 IA	1 44									, L		類金屬		◎液體 ■固體			鈍氣 VIII A
1 日氫 1.008	鹼土 金屬 Ⅱ A 2											硼族 III A 13	碳族 IV A 14	氮族 VA 15	氧族 VI A 16	鹵素 VII A 17	18 2 He 氦 4.003
3 Li 鋰 6.941	4 Be 鈹 9.012	[過渡	金屬					5 B 硼 10.81	6 C碳 12.01	7 N 氮 14.01	8 〇 氧 16.00	9 F氟 19.00	10 Ne 氛 20.18
11 Na 鈉 22.99	12 Mg 鎂 24.31	III B 3	IV В 4	V В 5	VI B 6	VII B 7	۲ 8	VIII B 9	10	I B 11	II B 12	13 Al 鋁 26.98	14 Si 矽 28.09	15 P磷 30.97	16 S 硫 32.07	17 Cl 氯 35.45	18 Ar 氩 39.95
19 K鉀 39.10	20 Ca 鈣 40.08	21 Sc 鈧 44.96	22 Ti 鈦 47.88	23 V 釩 50.94	24 Cr 鉻 52.00	25 Mn 錳 54.94	26 Fe 鐵 55.85	27 Co 鈷 58.93	28 Ni 鎳 58.69	29 Cu 銅 63.55	30 Zn 鋅 65.39	31 Ga 鎵 69.72	32 Ge 鍺 72.61	33 As 砷 74.92	34 Se 硒 78.96	35 Br 溴 79.90	36 Kr 氪 83.80
37 Rb 釦 85.47	38 Sr 鍶 87.62	39 Y 釔 88.91	40 Zr 鋯 91.22	41 Nb 鈮 92.91	42 Mo 鉬 95.94	43 Tc 鎝 98.91	44 Ru 釘 101.1	45 Rh 銠 102.9	46 Pd 鈀 106.4	47 Ag 銀 107.9	48 Cd 鎘 112.4	49 In 銦 114.8	50 Sn 錫 118.7	51 Sb 銻 121.8	52 Te 碲 127.6	53 I碘 126.9	54 Xe 氙 131.3
55 Cs 銫 132.9	56 Ba 鋇 137.3	鑭系 元素	72 Hf 鉿 178.5	73 Ta 鉭 180.9	74 W 鎢 183.9	75 Re 錸 186.2	76 Os 鋨 190.2	77 Ir 銥 192.2	78 Pt 鉑 195.1	79 Au 金 197.0	80 Hg 汞 200.6	81 TI 鉈 204.4	82 Pb 鉛 207.2	83 Bi 鉍 209.0	84 Po 針 (209)	85 At 砈 (210)	86 Rn 氡 (222)
87 Fr 鍅 (223)	88 Ra 鐳 226.0	錒系 元素	104 Rf 鑪 (261)	105 Db 鉗 (262)	106 Sg 饎 (263)	107 Bh 鈹 (262)	108 Hs 鍝 (265)	109 Mt 鐐 (267)	110 Ds 鐽 (269)	111 Rg 錀 (272)	112 Cn 鎶 (277)	113 Uut (286)	114 Fl 鈇 (289.2)	115 Uup (288)	116 Lv 鉝 (293.2)	117 Uus (294)	118 Uuo (294)
	鑭系 元素	57 La 鑭 138.9	58 Ce 鈰 140.1	59 Pr 鐠 140.9	60 Nd 鈫 144.21	61 Pm 鉕 (145)	62 Sm 釤 150.4	63 Eu 銪 152.0	64 Gd 釓 157.3	65 Tb 鋱 158.9	66 Dy 鏑 162.5	67 Ho 鈥 164.9	68 Er 鉺 167.3	69 Tm 銩 168.9	70 Yb 鏡 173.0	71 Lu 鎦 175.0	
	錒系 元素	89 Ac 錒 227.0	90 Th <u>針</u> 232.0	91 Pa 鏷 231.0	92 U鉑 238.0	93 Np 錼 237.0	94 Pu 鈽 (244)	95 Am 鋂 (243)	96 Cm 鋦 (247)	97 Bk 鉳 (247)	98 Cf 鉲 (251)	99 Es 鑀 (252)	100 Fm 鐨 (257)	101 Md 鍆 (258)	102 No 鍩 (259)	103 Lr 鐒 (262)	

₪																'¦"	ERCK
н																	2 He
Li s	4 Be											5 B	C 6	7 N	8 0	9 F	io Ne
Na Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	86 Kr
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	s4 Xe
ss Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	ae Rn
87 Fr	88 Ra		¹⁰⁴ Rf	105 Db	106 Sg	¹⁰⁷ Bh	108 Hs	¹⁰⁹ Mt	110 Ds	111 Rg	112 Cn	113	114	115	116	117	118
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			89 Ac	⁹⁰ Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 NO	103 Lr

Radionuclides for positron emission tomography (PET)

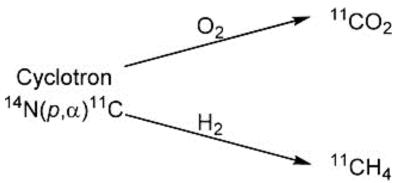
Isotope	Half-life	Primary decay mode (branching ratio)	Mean β ⁺ energy (keV)	β ⁺ end-point energy (keV)	% abundance β ⁺	Production route
¹¹ C	20.364 (14) min	β ⁺ (1)	385.70 (44)	960.4 (10)	99.7669 (25)	$^{14}N(p,\alpha)^{11}C$
¹³ N	9.965 (4) min	β ⁺ (1)	491.82 (12)	1198.5 (3)	99.8036 (20)	$^{16}O(p,\alpha)^{13}N$
¹⁵ O	122.24 (16) s	β ⁺ (1)	735.28 (23)	1732.0 (5)	99.9003 (10)	¹⁵ N(p,n) ¹⁵ O
						¹⁴ N(d,n) ¹⁵ O
¹⁸ F	109.77 (5) min	β ⁺ (1)	249.8 (3)	633.5 (6)	96.73 (4)	¹⁸ O(p,n) ¹⁸ F
						20 Ne(d, α) ¹⁸ F

- The Radiopharmaceutical Chemistry of Carbon-11: Basic Principles
- The Radiopharmaceutical Chemistry of Carbon-11: Tracers and Applications
- The Radiopharmaceutical Chemistry of Fluorine-18: Nucleophilic Fluorinations
- The Radiopharmaceutical Chemistry of Fluorine-18: Electrophilic Fluorinations

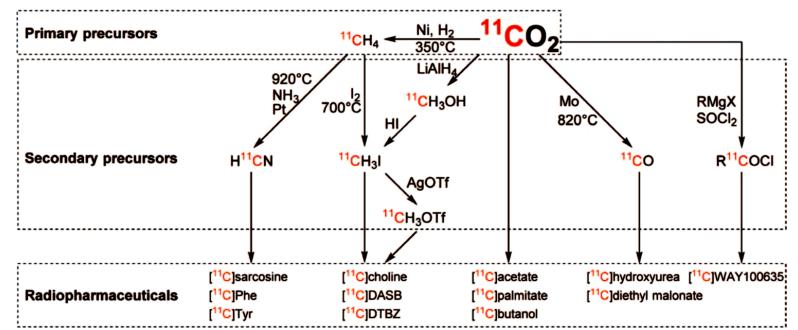

The Radiopharmaceutical Chemistry of Carbon-11: Basic Principles

Historic View on Carbon-11 Chemistry

Carbon-11 was produced for the first time in 1934 by Crane and Lauritsen.



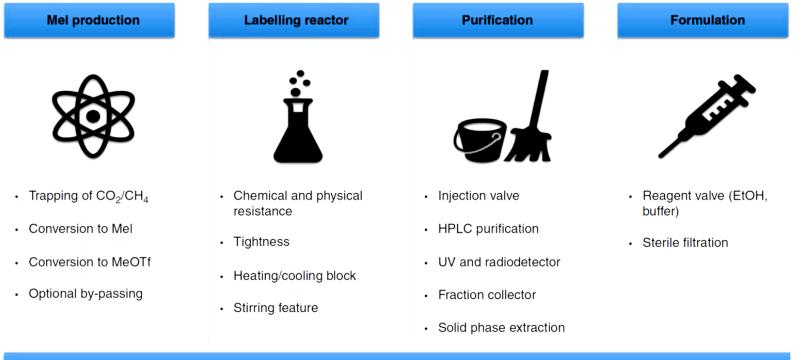
Decay Characteristics of Carbon-11



Carbon-11 Precursors for Labeling

Production of Carbon-11

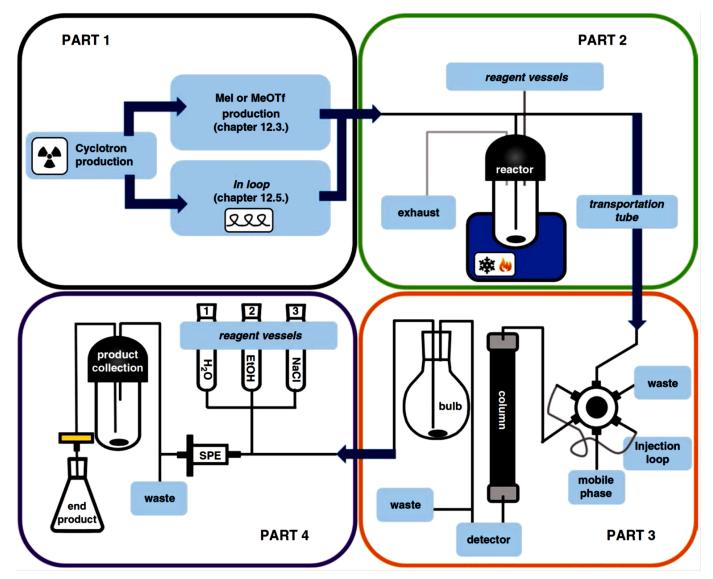
In-Target-Produced Primary Precursors Secondary Precursors

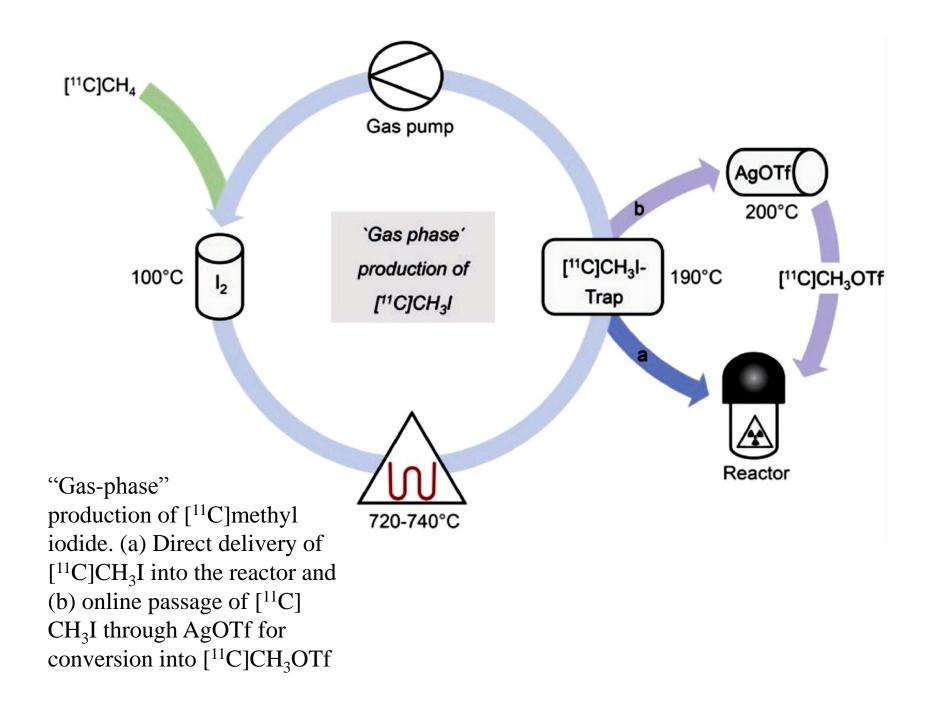


[¹¹C]Carbon Dioxide: Starting Point for Labeling PET Radiopharmaceuticals http://dx.doi.org/10.5772/intechopen.72313

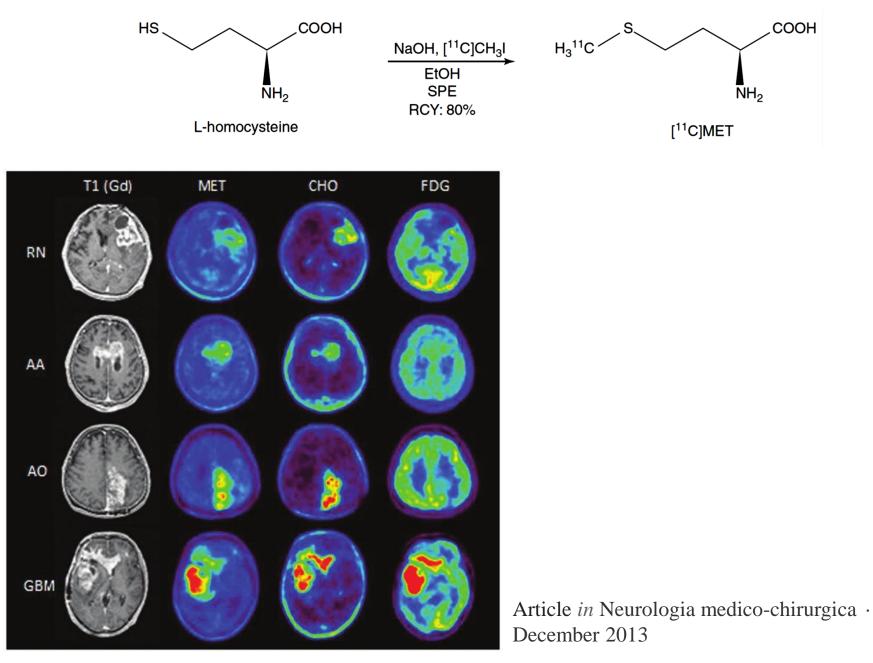
The Radiopharmaceutical Chemistry of Carbon-11: Tracers and Applications

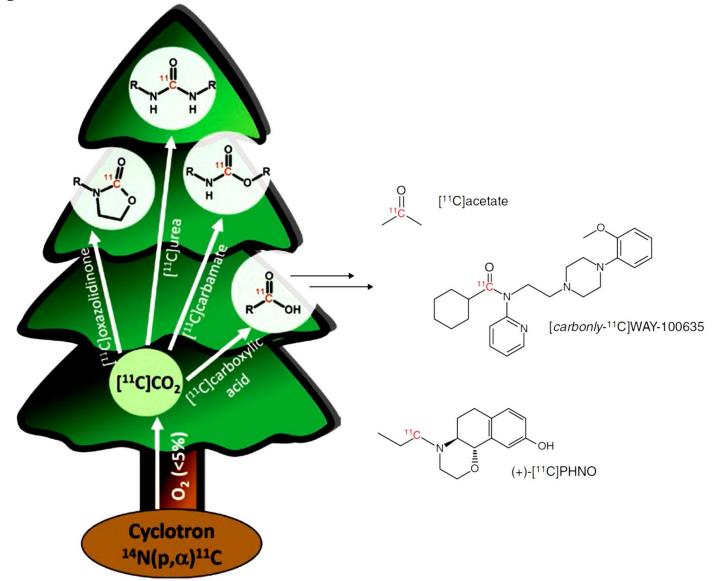
Technical Aspects of Carbon-11: Commercially Available Synthesizers and Optimization


Overview of the four necessary procedures for a successful radiosynthesis

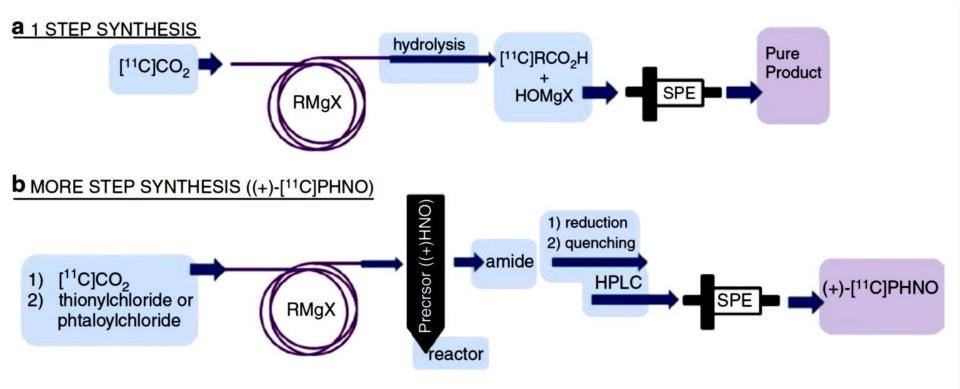

Connecting system including inert gas connection (He or Ar)

General Considerations for Radiotracer Production and the Setup of Synthesizers

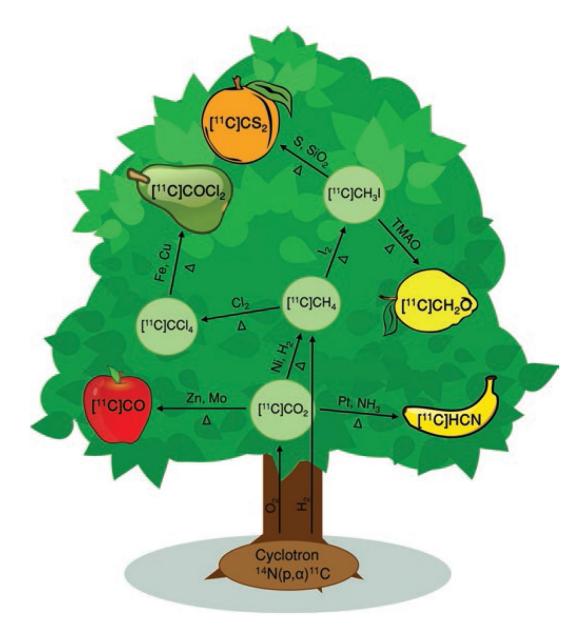

Reactors and Reagent Vessels


The four essential parts of carbon-11 radiosynthetic modules

Radiochemical synthesis of [¹¹C]MET

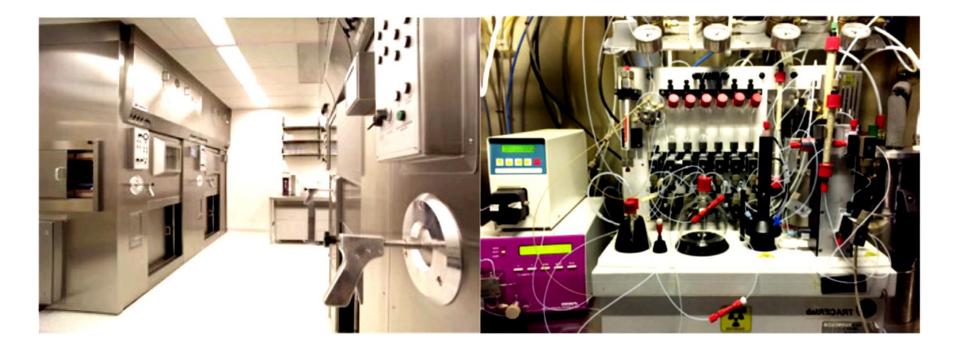


Reaction pathways to $[^{11}C]CO_2$ fixation products yielding in high oxidation state functional groups



- 1. Grignard Reactions in Carbon-11 Radiochemistry (In-Loop)
- 2. Moisture Sensitivity, Solvents, and Preparation
- 3. Technical Considerations: Reaction Vessels Versus In-Loop Syntheses for Grignard

Scheme of in-loop syntheses for (**a**) a one-step reaction and (**b**) a multistep synthesis of (+)- $[^{11}C]PHNO$

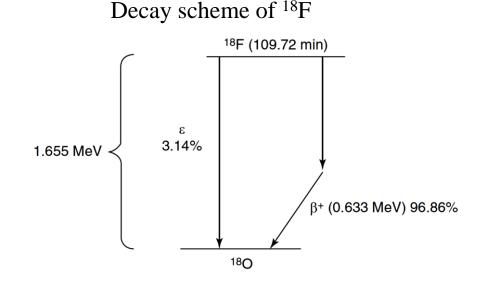


Overview of Other Methodologies for the Production of ¹¹**C-Labeled Radiotracers**

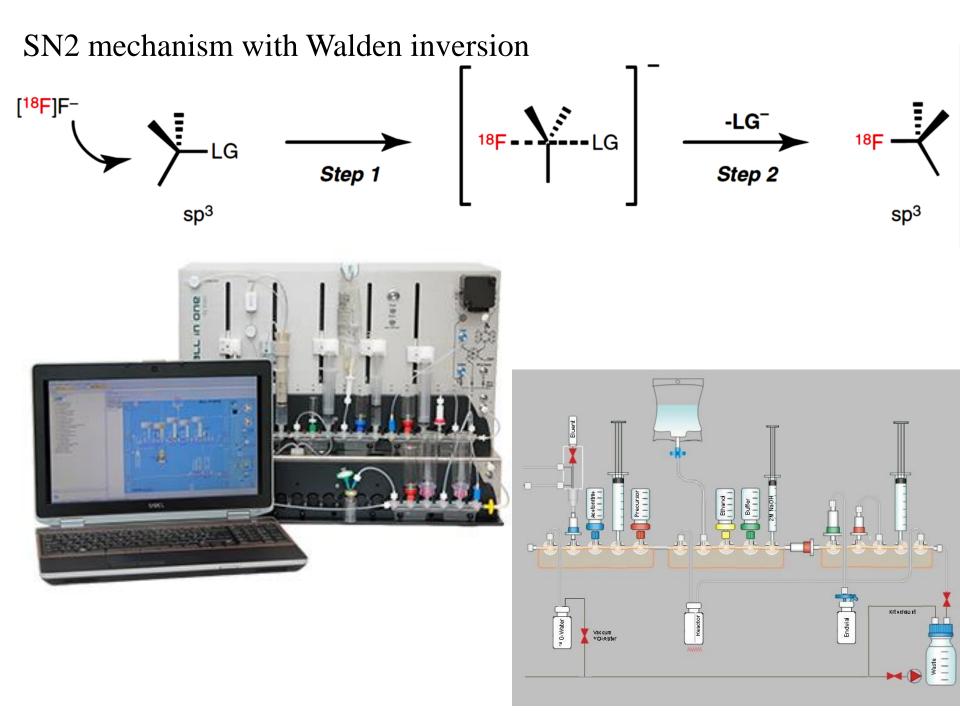
Reaction pathways to less-common carbon-11 precursors

Automatical synthesis equipment in lead-shielded fume hoods

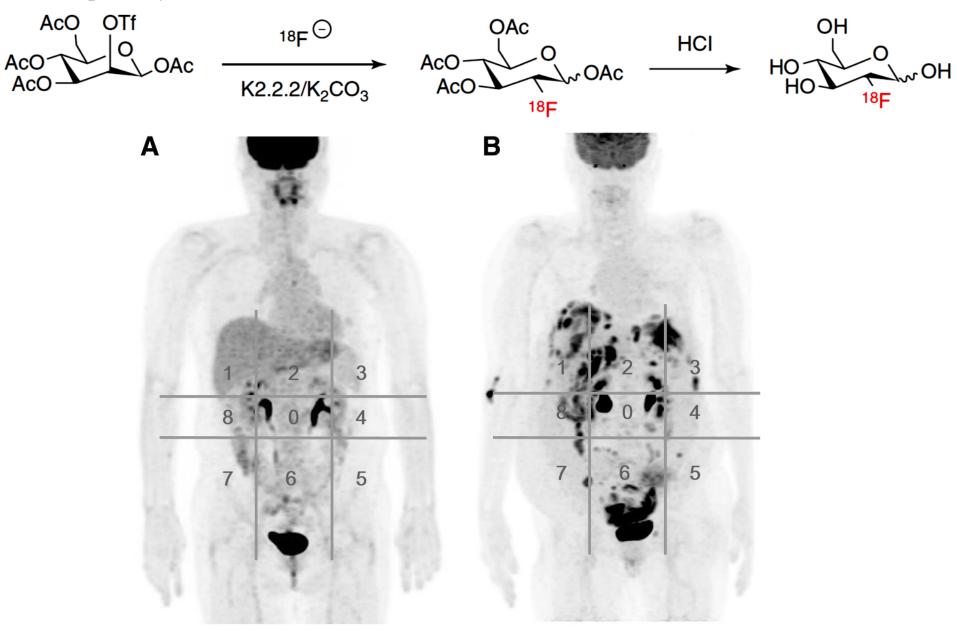
[¹¹C]Carbon Dioxide: Starting Point for Labeling PET Radiopharmaceuticals http://dx.doi.org/10.5772/intechopen.72313


Automatical synthesis equipment in lead-shielded fume hoods

- The Radiopharmaceutical Chemistry of Carbon-11: Basic Principles
- The Radiopharmaceutical Chemistry of Carbon-11: Tracers and Applications
- The Radiopharmaceutical Chemistry of Fluorine-18: Nucleophilic Fluorinations
- The Radiopharmaceutical Chemistry of Fluorine-18: Electrophilic Fluorinations

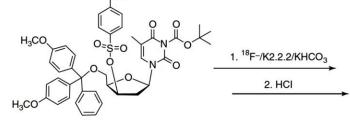

The Radiopharmaceutical Chemistry of Fluorine-18: Nucleophilic Fluorinations

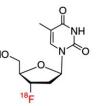
Introduction of Fluorine-18



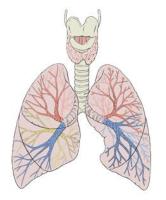
1. Nucleophilic ¹⁸F-Substitution

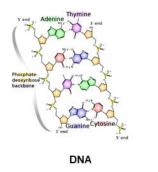
- 2. General Aspects of ¹⁸F-Labeling
- 3. ¹⁸F-Preprocessing
- 4. Aliphatic ¹⁸F-Substitution



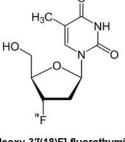

Nucleophilic synthesis – of [¹⁸F]FDG

Journal of Ovarian Research volume 12, Article number: 12 (2019)

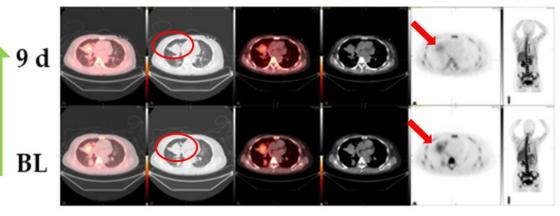

Synthesis of $[^{18}F]$ FLT from the corresponding precursor using a nosyl leaving group and *tert*butoxycarbonyl and dimethoxytrityl protecting groups for the amide and hydroxyl, respectively

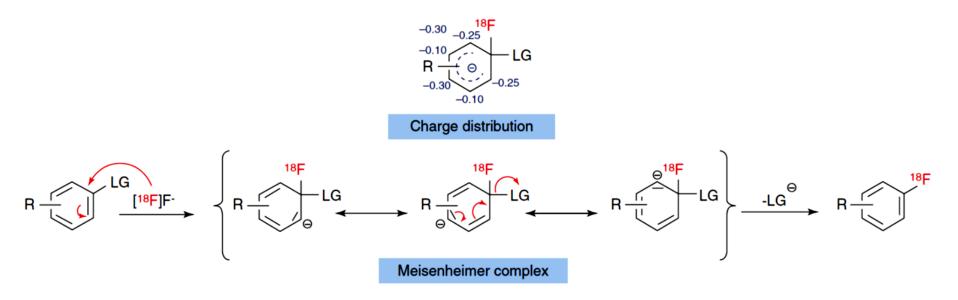


[18F]fluoro-L-thymidine

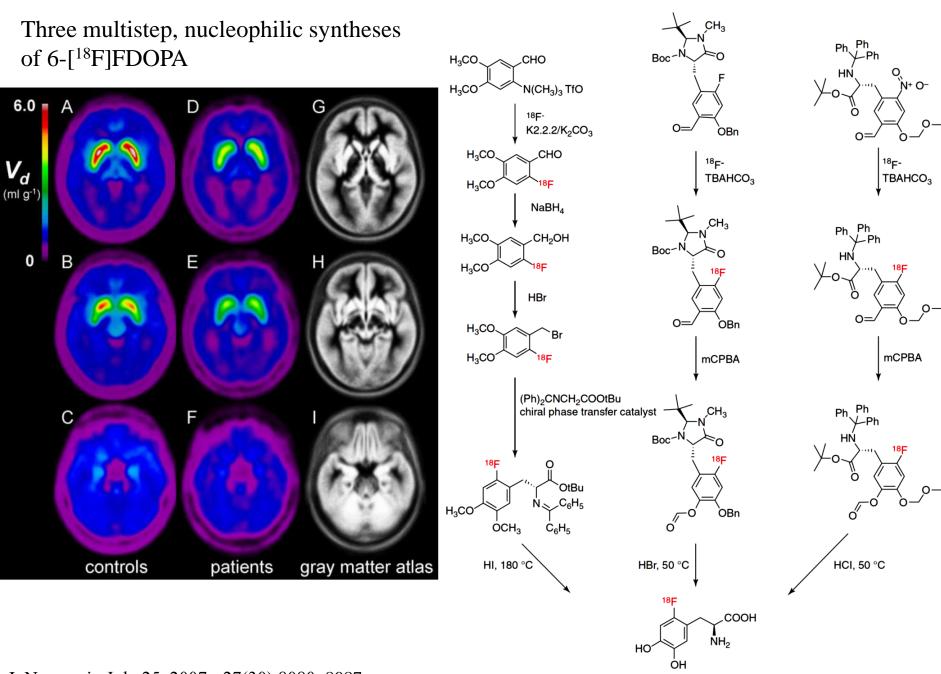

Early Response Assessment to Targeted Therapy using ¹⁸F-FLT-PET/CT in Lung Cancer

FLT indicates changes in tumor cell proliferation



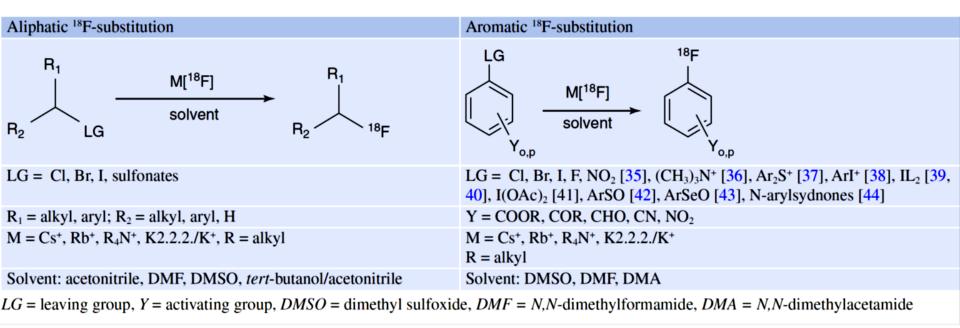

3'-deoxy-3'[(18)F]-fluorothymidine (FLT)

Baseline \rightarrow 9 day CT vs FLT-PET imaging post targeted therapy



Diagnostics 2020, 10(1), 26

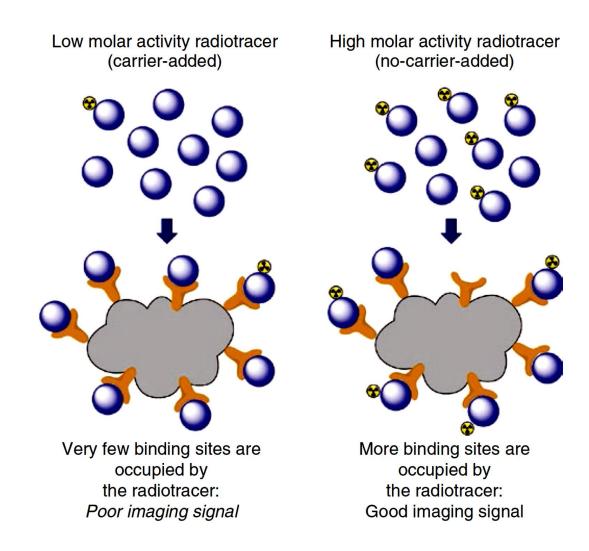
Synthesis of ¹⁸F-Labeled Arenes by Aromatic Nucleophilic ¹⁸F-Substitution (SNAr)



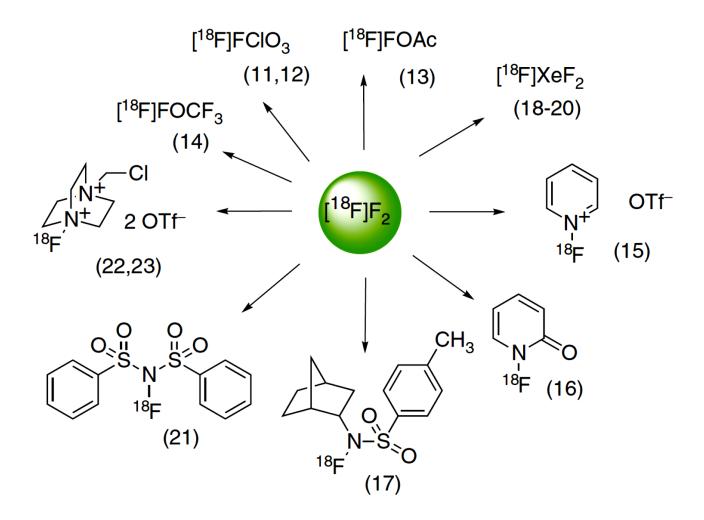
Aromatic nucleophilic substitution (S_NAr)

J. Neurosci., July 25, 2007 • 27(30):8080–8087

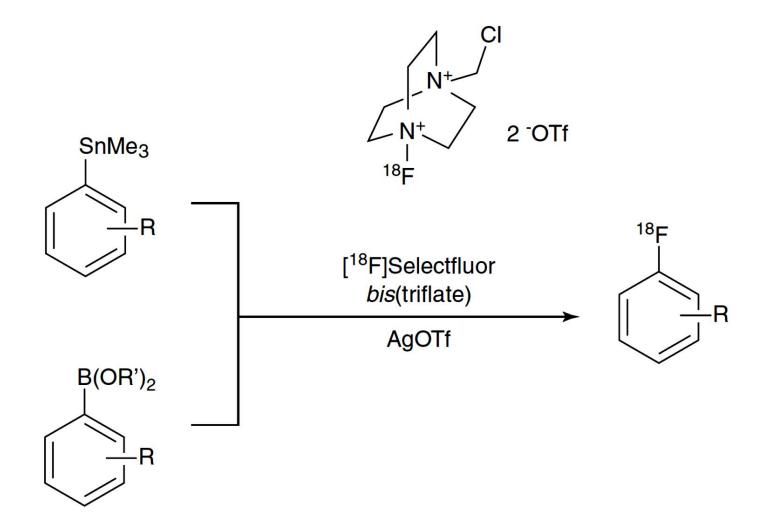
Prerequisites for nucleophilic ¹⁸F-substitutions


The Radiopharmaceutical Chemistry of Fluorine-18: Electrophilic Fluorinations

The Fundamentals of Electrophilic Radio-fluorination Chemistry


Structures of 2-[¹⁸F]FDG (left) and 6-[¹⁸F]F-DOPA (right)

The Fundamentals of Electrophilic Radio-fluorination Chemistry


Influence of molar activity on the quality of the imaging signal

Secondary Labeling Precursors and Building Blocks for Electrophilic Radiofluorinations with ¹⁸F

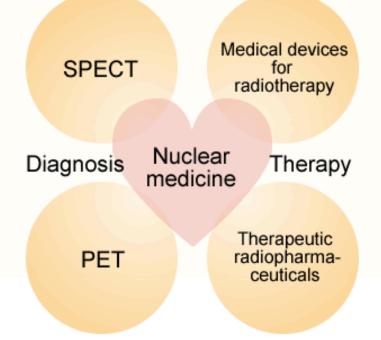
Secondary precursors for electrophilic ¹⁸F-labeling derived from [¹⁸F]F₂

Ag-mediated radiofluorinations with [¹⁸F]Selectfluor® *bis*(triflate)

Radiopharmaceutical	Synthesis method	Application	References
$HO \qquad OH \\ HO \qquad 0H \\ 18F \\ 2-[^{18}F]Fluoro-deoxyglucose \\ (2-[^{18}F]FDG) \\ 2-[^{18}F]Fluorodeoxyglucose \\ (2-[^{18}F]FDG) \\ (2-[^{18}F]$	Addition of [¹⁸ F]F ₂ , [¹⁸ F]XeF ₂ , or [¹⁸ F] FOAc to the double bond in triacetoxyglucal precursor	PET imaging of glucose metabolism	[1] ([¹⁸ F]F ₂) [34] ([¹⁸ F]XeF ₂) [35] ([¹⁸ F]FOAc)
$ \begin{array}{c} & \overbrace{N \\ N \\ NO_2 \end{array} } CF_2^{18}F \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Addition of [¹⁸ F]F ₂ to the double bond in trifluoroallyl precursor	PET imaging of hypoxia	[36]
HO HO HO HO $18_{\rm F}$ NH ₂ 6-[¹⁸ F]Fluoro-3,4- dihydroxy-L-phenylalanine (6-[¹⁸ F]F-DOPA) 6-[¹⁸ F]Fluoro-3,4-dihydroxy-L-phenylalanine (6-[¹⁸ F]F-DOPA)	Direct electrophilic radiofluorination with [¹⁸ F]F ₂ or [¹⁸ F]FOAc ¹⁸ F-fluorodemetallation using HgR ₂ or SnMe ₃ precursors with [¹⁸ F]F ₂ or [¹⁸ F] FOAc	PET imaging of dopamine metabolism	[22] ([¹⁸ F]F ₂) [37] ([¹⁸ F]FOAc) [25, 26] ([¹⁸ F]FOAc, HgR ₂) [27, 29] ([¹⁸ F]F ₂ , SnMe ₃) [29] ([¹⁸ F]FOAc, SnMe ₃)

		A 44 .4	D.C
Radiopharmaceutical	Synthesis method	Application	References
HN HN H 5-[¹⁸ F]Fluorouracil 5-[¹⁸ F]Fluorouracil	Direct electrophilic radiofluorination with [¹⁸ F]F ₂ or [¹⁸ F]FOAc	Tumor imaging	[38, 39] ([¹⁸ F]F ₂) [40] ([¹⁸ F]FOAc)
HO_{B} OH_{B} O	Direct electrophilic radiofluorination with [¹⁸ F]FOAc	PET imaging of amino acid metabolism	[41, 42]
HO ¹⁸ F ^{NH} ² 2-[¹⁸ F]Fluoro-L-tyrosine 2-[¹⁸ F]Fluoro-L-tyrosine	¹⁸ F-fluorodestannylation with [¹⁸ F]F ₂	PET imaging of amino acid metabolism	[31]

Radiopharmaceutical	Synthesis method	Application	References
$HN + N + N + 18F$ $H_2N + N + N + 0$ $HN + N + N + 0$ $H_2N + 0$ $H^{-18}F$	Direct electrophilic radiofluorination with [¹⁸ F]F ₂	PET imaging of HSV1-tk expression	[43]
H ³ C O CH ₃ [¹⁸ F]CFT [¹⁸ F]CFT	¹⁸ F-fluorodestannylation with [¹⁸ F]FOAc	PET imaging of dopamine metabolism	[44]
O HO HO HO HB HB HB HB HB HB HB HB	¹⁸ F-fluorodestannylation with [¹⁸ F]F ₂	PET imaging of cardiac sympathetic nerve integrity	[30]


The Radiopharmaceutical Chemistry of Fluorine-18: Next-Generation Fluorinations

Comparison of the bond dissociation energies (kJ/mol) of the bond between fluorine and carbon as well as some heteroatoms

Bond	Bond dissociation energy (kJ/mol)
B-F	732
C-F	514
N-F	290
Al-F	675
Si-F	576
P-F	405

Thank you for your attention!!

